Nonlinear Least-Squares Fitting¶ ↑
This chapter describes functions for multidimensional nonlinear least-squares fitting. The library provides low level components for a variety of iterative solvers and convergence tests. These can be combined by the user to achieve the desired solution, with full access to the intermediate steps of the iteration. Each class of methods uses the same framework, so that you can switch between solvers at runtime without needing to recompile your program. Each instance of a solver keeps track of its own state, allowing the solvers to be used in multi-threaded programs.
Contents:
Overview¶ ↑
The problem of multidimensional nonlinear least-squares fitting requires the minimization of the squared residuals of n functions, f_i, in p parameters, x_i, All algorithms proceed from an initial guess using the linearization, where x is the initial point, p is the proposed step and J is the Jacobian matrix J_{ij} = d f_i / d x_j. Additional strategies are used to enlarge the region of convergence. These include requiring a decrease in the norm ||F|| on each step or using a trust region to avoid steps which fall outside the linear regime.
To perform a weighted least-squares fit of a nonlinear model Y(x,t) to data (t_i, y_i) with independent gaussian errors sigma_i, use function components of the following form, Note that the model parameters are denoted by x in this chapter since the non-linear least-squares algorithms are described geometrically (i.e. finding the minimum of a surface). The independent variable of any data to be fitted is denoted by t.
With the definition above the Jacobian is J_{ij} =(1 / sigma_i) d Y_i / d x_j, where Y_i = Y(x,t_i).
Initializing the Solver¶ ↑
FdfSolver class¶ ↑
-
GSL::MultiFit::FdfSolver.alloc(T, n, p)
This creates an instance of the
GSL::MultiFit::FdfSolver
class of typeT
forn
observations andp
parameters. The typeT
is given by aFixnum
constant or aString
,-
GSL::MultiFit::LMSDER
or"lmsder"
-
GSL::MultiFit::LMDER
or"lmder"
For example, the following code creates an instance of a Levenberg-Marquardt solver for 100 data points and 3 parameters,
solver = MultiFit::FdfSolver.alloc(MultiFit::LMDER, 100, 3)
-
-
GSL::MultiFit::FdfSolver#set(f, x)
This method initializes, or reinitializes, an existing solver
self
to use the functionf
and the initial guessx
. The functionf
is an instance of theGSL::MultiFit::Function_fdf
class (see below). The initial guess of the parametersx
is given by a GSL::Vector object.
-
GSL::MultiFit::FdfSolver#name
This returns the name of the solver
self
as a String.
-
GSL::MultiFit::FdfSolver#x
-
GSL::MultiFit::FdfSolver#dx
-
GSL::MultiFit::FdfSolver#f
-
GSL::MultiFit::FdfSolver#J
-
GSL::MultiFit::FdfSolver#jacobian
-
GSL::MultiFit::FdfSolver#jac
Access to the members (see
gsl_multifit_nlin.h
)
Providing the function to be minimized¶ ↑
Function_fdf class¶ ↑
-
GSL::MultiFit::Function_fdf.alloc()
-
GSL::MultiFit::Function_fdf.alloc(f, df, p)
-
GSL::MultiFit::Function_fdf.alloc(f, df, fdf, p)
Constructor for the
Function_fdf
class, to a function withp
parameters, The first two or three arguments are Ruby Proc objects to evaluate the function to minimize and its derivative (Jacobian).
-
GSL::MultiFit::Function_fdf#set_procs(f, df, p)
-
GSL::MultiFit::Function_fdf#set_procs(f, df, fdf, p)
This initialize of reinitialize the function
self
withp
parameters by two or three Proc objectsf, df
andfdf
.
-
GSL::MultiFit::Function_fdf#set_data(t, y)
-
GSL::MultiFit::Function_fdf#set_data(t, y, sigma)
This sets the data
t, y, sigma
of lengthn
, to the functionself
.
Iteration¶ ↑
-
GSL::MultiFit::FdfSolver#iterate
THis performs a single iteration of the solver
self
. If the iteration encounters an unexpected problem then an error code will be returned. The solver maintains a current estimate of the best-fit parameters at all times. This information can be accessed with the methodposition
.
-
GSL::MultiFit::FdfSolver#position
This returns the current position (i.e. best-fit parameters) of the solver
self
, as aGSL::Vector
object.
Search Stopping Parameters¶ ↑
A minimization procedure should stop when one of the following conditions is true:
-
A minimum has been found to within the user-specified precision.
-
A user-specified maximum number of iterations has been reached.
-
An error has occurred.
The handling of these conditions is under user control. The method below allows the user to test the current estimate of the best-fit parameters.
-
GSL::MultiFit::FdfSolver#test_delta(epsabs, epsrel)
This method tests for the convergence of the sequence by comparing the last step with the absolute error
epsabs
and relative error (epsrel
to the current position. The test returnsGSL::SUCCESS
if the following condition is achieved,|dx_i| < epsabs + epsrel |x_i|
for each component of
x
and returnsGSL::CONTINUE
otherwise.
-
GSL::MultiFit::FdfSolver#test_gradient(g, epsabs)
-
GSL::MultiFit::FdfSolver#test_gradient(epsabs)
This function tests the residual gradient
g
against the absolute error boundepsabs
. Ifg
is not given, it is calculated internally. Mathematically, the gradient should be exactly zero at the minimum. The test returnsGSL::SUCCESS
if the following condition is achieved,\sum_i |g_i| < epsabs
and returns
GSL::CONTINUE
otherwise. This criterion is suitable for situations where the precise location of the minimum, x, is unimportant provided a value can be found where the gradient is small enough.
-
GSL::MultiFit::FdfSolver#gradient
This method returns the gradient g of Phi(x) = (1/2) ||F(x)||^2 from the Jacobian matrix and the function values, using the formula g = J^T f.
-
GSL::MultiFit.test_delta(dx, x, epsabs, epsrel)
-
GSL::MultiFit.test_gradient(g, epsabs)
-
GSL::MultiFit.gradient(jac, f, g)
-
GSL::MultiFit.covar(jac, epsrel)
-
GSL::MultiFit.covar(jac, epsrel, covar)
Singleton methods of the
GSL::MultiFit
module.
Computing the covariance matrix of best fit parameters¶ ↑
-
GSL::MultiFit.covar(J, epsrel)
-
GSL::MultiFit.covar(J, epsrel, covar)
This method uses the Jacobian matrix
J
to compute the covariance matrix of the best-fit parameters. If an existing matrixcovar
is given, it is overwritten, and if not, this method returns a new matrix. The parameterepsrel
is used to remove linear-dependent columns whenJ
is rank deficient.The covariance matrix is given by,
covar = (J^T J)^{-1}
and is computed by QR decomposition of
J
with column-pivoting. Any columns of R which satisfy|R_{kk}| <= epsrel |R_{11}|
are considered linearly-dependent and are excluded from the covariance matrix (the corresponding rows and columns of the covariance matrix are set to zero).
Higher level interfaces¶ ↑
-
GSL::MultiFit::FdfSolver.fit(x, y, type[, guess])
-
GSL::MultiFit::FdfSolver.fit(x, w, y, type[, guess])
This method uses
FdfSolver
with the LMSDER algorithm to fit the data[x, y]
to a function of typetype
. The returned value is an array of 4 elements,[coef, err, chisq, dof]
, wherecoef
is an array of the fitting coefficients,err
contains errors in estimatingcoef
,chisq
is the chi-squared, anddof
is the degree-of-freedom in the fitting which equals to (data length - number of fitting coefficients). The optional argumentguess
is an array of initial guess of the coefficients. The fitting typetype
is given by aString
as follows.-
"gaussian"
: Gaussian fit,y = y0 + A exp(-(x-x0)^2/2/var)
,coef = [y0, A, x0, var]
-
"gaussian_2peaks"
: 2-peak Gaussian fit,y = y0 + A1 exp(-(x-x1)^2/2/var1) + A2 exp(-(x-x2)^2/2/var2)
,coef = [y0, A1, x1, var1, A2, x2, var2]
-
"exp"
: Exponential fit,y = y0 + A exp(-b x)
,coef = [y0, A, b]
-
"dblexp"
: Double exponential fit,y = y0 + A1 exp(-b1 x) + A2 exp(-b2 x)
,coef = [y0, A1, b1, A2, b2]
-
"sin"
: Sinusoidal fit,y = y0 + A sin(f x + phi)
,coef = [y0, A, f, phi]
-
"lor"
: Lorentzian peak fit,y = y0 + A/((x-x0)^2 + B)
,coef = [y0, A, x0, B]
-
"hill"
: Hill's equation fit,y = y0 + (m - y0)/(1 + (xhalf/x)^r)
,coef = [y0, n, xhalf, r]
-
"sigmoid"
: Sigmoid (Fermi-Dirac) function fit,y = y0 + m/(1 + exp((x0-x)/r))
,coef = [y0, m, x0, r]
-
"power"
: Power-law fit,y = y0 + A x^r
,coef = [y0, A, r]
-
"lognormal"
: Lognormal peak fit,y = y0 + A exp[ -(log(x/x0)/width)^2 ]
,coef = [y0, A, x0, width]
See Linear fitting for linear and polynomical fittings.
-
Examples¶ ↑
Fitting to user-defined functions¶ ↑
The following example program fits a weighted exponential model with
background to experimental data, Y = A exp(-lambda t) + b. The first part
of the program sets up the functions procf
and
procdf
to calculate the model and its Jacobian. The
appropriate fitting function is given by,
f_i = ((A exp(-lambda t_i) + b) - y_i)/sigma_i
where we have chosen t_i = i. The Jacobian matrix jac
is the
derivative of these functions with respect to the three parameters (A,
lambda, b). It is given by,
J_{ij} = d f_i / d x_j
where x_0 = A, x_1 = lambda and x_2 = b.
require("gsl") include GSL::MultiFit # x: Vector, list of the parameters to determine # t, y, sigma: Vectors, observational data # f: Vector, function to minimize procf = Proc.new { |x, t, y, sigma, f| a = x[0] lambda = x[1] b = x[2] n = t.size for i in 0...n do yi = a*Math::exp(-lambda*t[i]) + b f[i] = (yi - y[i])/sigma[i] end } # jac: Matrix, Jacobian procdf = Proc.new { |x, t, y, sigma, jac| a = x[0] lambda = x[1] n = t.size for i in 0...n do ti = t[i] si = sigma[i] ei = Math::exp(-lambda*ti) jac.set(i, 0, ei/si) jac.set(i, 1, -ti*a*ei/si) jac.set(i, 2, 1.0/si) end } f = GSL::MultiFit::Function_fdf.alloc(procf, procdf, 2) # Create data r = GSL::Rng.alloc() t = GSL::Vector.alloc(n) y = GSL::Vector.alloc(n) sigma = Vector.alloc(n) for i in 0...n do t[i] = i y[i] = 1.0 + 5*Math::exp(-0.1*t[i]) + r.gaussian(0.1) sigma[i] = 0.1 end f.set_data(t, y, sigma) x = GSL::Vector.alloc(1.0, 0.0, 0.0) # initial guess solver = GSL::FdfSolver.alloc(FdfSolver::LMSDER, n, np) solver.set(f, x) iter = 0 solver.print_state(iter) begin iter += 1 status = solver.iterate solver.print_state(iter) status = solver.test_delta(1e-4, 1e-4) end while status == GSL::CONTINUE and iter < 500 covar = solver.covar(0.0) position = solver.position chi2 = pow_2(solver.f.dnrm2) dof = n - np printf("A = %.5f +/- %.5f\n", position[0], Math::sqrt(chi2/dof*covar[0][0])) printf("lambda = %.5f +/- %.5f\n", position[1], Math::sqrt(chi2/dof*covar[1][1])) printf("b = %.5f +/- %.5f\n", position[2], Math::sqrt(chi2/dof*covar[2][2]))
Fitting to built-in functions¶ ↑
#!/usr/bin/env ruby require("gsl") include MultiFit N = 100 y0 = 1.0 A = 2.0 x0 = 3.0 w = 0.5 r = Rng.alloc x = Vector.linspace(0.01, 10, N) sig = 1 # Lognormal function with noise y = y0 + A*Sf::exp(-pow_2(Sf::log(x/x0)/w)) + 0.1*Ran::gaussian(r, sig, N) guess = [0, 3, 2, 1] coef, err, chi2, dof = MultiFit::FdfSolver.fit(x, y, "lognormal", guess) y0 = coef[0] amp = coef[1] x0 = coef[2] w = coef[3] graph(x, y, y0+amp*Sf::exp(-pow_2(Sf::log(x/x0)/w)))