Random Number Generation

The library provides a large collection of random number generators which can be accessed through a uniform interface. Environment variables allow you to select different generators and seeds at runtime, so that you can easily switch between generators without needing to recompile your program. Each instance of a generator keeps track of its own state, allowing the generators to be used in multi-threaded programs. Additional functions are available for transforming uniform random numbers into samples from continuous or discrete probability distributions such as the Gaussian, log-normal or Poisson distributions.

Contents:

  1. General comments on random numbers

  2. The Random Number Generator Interface: GSL::Rng class

  3. Random number generator initialization

  4. Sampling from a random number generator

  5. Auxiliary random number generator functions

  6. Random number environment variables

General comments on random numbers

In 1988, Park and Miller wrote a paper entitled “Random number generators: good ones are hard to find.” [Commun. ACM, 31, 1192-1201]. Fortunately, some excellent random number generators are available, though poor ones are still in common use. You may be happy with the system-supplied random number generator on your computer, but you should be aware that as computers get faster, requirements on random number generators increase. Nowadays, a simulation that calls a random number generator millions of times can often finish before you can make it down the hall to the coffee machine and back.

A very nice review of random number generators was written by Pierre L'Ecuyer, as Chapter 4 of the book: Handbook on Simulation, Jerry Banks, ed. (Wiley, 1997). The chapter is available in postscript from L'Ecuyer's ftp site (see references). Knuth's volume on Seminumerical Algorithms (originally published in 1968) devotes 170 pages to random number generators, and has recently been updated in its 3rd edition (1997). It is brilliant, a classic. If you don't own it, you should stop reading right now, run to the nearest bookstore, and buy it.

A good random number generator will satisfy both theoretical and statistical properties. Theoretical properties are often hard to obtain (they require real math!), but one prefers a random number generator with a long period, low serial correlation, and a tendency not to “fall mainly on the planes.” Statistical tests are performed with numerical simulations. Generally, a random number generator is used to estimate some quantity for which the theory of probability provides an exact answer. Comparison to this exact answer provides a measure of “randomness”.

The Random Number Generator Interface

It is important to remember that a random number generator is not a “real” function like sine or cosine. Unlike real functions, successive calls to a random number generator yield different return values. Of course that is just what you want for a random number generator, but to achieve this effect, the generator must keep track of some kind of “state” variable. Sometimes this state is just an integer (sometimes just the value of the previously generated random number), but often it is more complicated than that and may involve a whole array of numbers, possibly with some indices thrown in. To use the random number generators, you do not need to know the details of what comprises the state, and besides that varies from algorithm to algorithm.

The random number generator library uses GSL::Rng class for the interface.

Random number generator initialization







Sampling from a random number generator





Auxiliary random number generator functions




Random number environment variables

The library allows you to choose a default generator and seed from the environment variables GSL_RNG_TYPE and GSL_RNG_SEED and the method GSL::Rng::env_setup.


prev next

Reference index top