Permutations

Contents:

  1. Permuation allocations

  2. Methods

    1. Accessing permutation elements

    2. Permuation properties

    3. Permuation functions

    4. Reading and writing permutations

  3. Permutations in cyclic form

  4. Applying Permutations

Permuation allocations



Methods




Accessing permutation elements



Permutation properties




Permutation functions





Reading and writing permutations


Permutations in cyclic Form

A permutation can be represented in both linear and cyclic notations. The functions described in this section convert between the two forms. The linear notation is an index mapping, and has already been described above. The cyclic notation expresses a permutation as a series of circular rearrangements of groups of elements, or cycles.

For example, under the cycle (1 2 3), 1 is replaced by 2, 2 is replaced by 3 and 3 is replaced by 1 in a circular fashion. Cycles of different sets of elements can be combined independently, for example (1 2 3) (4 5) combines the cycle (1 2 3) with the cycle (4 5), which is an exchange of elements 4 and 5. A cycle of length one represents an element which is unchanged by the permutation and is referred to as a singleton.

It can be shown that every permutation can be decomposed into combinations of cycles. The decomposition is not unique, but can always be rearranged into a standard canonical form by a reordering of elements. The library uses the canonical form defined in Knuth's Art of Computer Programming (Vol 1, 3rd Ed, 1997) Section 1.3.3, p.178.

The procedure for obtaining the canonical form given by Knuth is,

  1. Write all singleton cycles explicitly

  2. Within each cycle, put the smallest number first

  3. Order the cycles in decreasing order of the first number in the cycle.

For example, the linear representation (2 4 3 0 1) is represented as (1 4) (0 2 3) in canonical form. The permutation corresponds to an exchange of elements 1 and 4, and rotation of elements 0, 2 and 3.

The important property of the canonical form is that it can be reconstructed from the contents of each cycle without the brackets. In addition, by removing the brackets it can be considered as a linear representation of a different permutation. In the example given above the permutation (2 4 3 0 1) would become (1 4 0 2 3). This mapping has many applications in the theory of permutations.






Applying Permutations




prev next

Reference index top