Permutations¶ ↑
Contents:
Permuation allocations¶ ↑
-
GSL::Permutation.alloc(n)
These functions create a new permutation of size
n
. The permutation is not initialized and its elements are undefined. UseGSL::Permutation.calloc
if you want to create a permutation which is initialized to the identity.
-
GSL::Permutation.calloc(n)
This creates a new permutation of size
n
and initializes it to the identity.
Methods¶ ↑
-
GSL::Permutation#init()
This initializes the permutation to the identity, i.e. (0,1,2,…,n-1).
-
GSL::Permutation.memcpy(dest, src)
This method copies the elements of the permutation
src
into the permutationdest
. The two permutations must have the same size.
-
GSL::Permutation#clone
This creates a new permutation with the same elements of
self
.
Accessing permutation elements¶ ↑
-
GSL::Permutation#get(i)
Returns the value of the
i
-th element of the permutation.
-
GSL::Permutation#swap(i, j)
This exchanges the
i
-th andj
-th elements of the permutation.
Permutation properties¶ ↑
-
GSL::Permutation#size
Returns the size of the permutation.
-
GSL::Permutation#valid
This checks that the permutation
self
is valid. The n elements should contain each of the numbers 0 .. n-1 once and only once.
-
GSL::Permutation#valid?
This returns true if the permutation
self
is valid, and false otherwise.
Permutation functions¶ ↑
-
GSL::Permutation#reverse
This reverses the elements of the permutation
self
.
-
GSL::Permutation#inverse
This computes the inverse of the permutation
self
, and returns as a new permutation.
-
GSL::Permutation#next
This method advances the permutation
self
to the next permutation in lexicographic order and returnsGSL::SUCCESS
. If no further permutations are available it returnsGSL::FAILURE
and leavesself
unmodified. Starting with the identity permutation and repeatedly applying this function will iterate through all possible permutations of a given order.
-
GSL::Permutation#prev
This method steps backwards from the permutation
self
to the previous permutation in lexicographic order, returningGSL_SUCCESS
. If no previous permutation is available it returnsGSL_FAILURE
and leavesself
unmodified.
Reading and writing permutations¶ ↑
-
GSL::Permutation#fwrite(io)
-
GSL::Permutation#fwrite(filename)
-
GSL::Permutation#fread(io)
-
GSL::Permutation#fread(filename)
-
GSL::Permutation#fprintf(io, format = “%un”)
-
GSL::Permutation#fprintf(filename, format = “%un”)
-
GSL::Permutation#fscanf(io)
-
GSL::Permutation#fscanf(filename)
Permutations in cyclic Form¶ ↑
A permutation can be represented in both linear
and
cyclic
notations. The functions described in this section
convert between the two forms. The linear notation is an index mapping, and
has already been described above. The cyclic notation expresses a
permutation as a series of circular rearrangements of groups of elements,
or cycles
.
For example, under the cycle (1 2 3), 1 is replaced by 2, 2 is replaced by
3 and 3 is replaced by 1 in a circular fashion. Cycles of different sets of
elements can be combined independently, for example (1 2 3) (4 5) combines
the cycle (1 2 3) with the cycle (4 5), which is an exchange of elements 4
and 5. A cycle of length one represents an element which is unchanged by
the permutation and is referred to as a singleton
.
It can be shown that every permutation can be decomposed into combinations
of cycles. The decomposition is not unique, but can always be rearranged
into a standard canonical form
by a reordering of elements.
The library uses the canonical form defined in Knuth's Art of
Computer Programming
(Vol 1, 3rd Ed, 1997) Section 1.3.3, p.178.
The procedure for obtaining the canonical form given by Knuth is,
-
Write all singleton cycles explicitly
-
Within each cycle, put the smallest number first
-
Order the cycles in decreasing order of the first number in the cycle.
For example, the linear representation (2 4 3 0 1) is represented as (1 4) (0 2 3) in canonical form. The permutation corresponds to an exchange of elements 1 and 4, and rotation of elements 0, 2 and 3.
The important property of the canonical form is that it can be reconstructed from the contents of each cycle without the brackets. In addition, by removing the brackets it can be considered as a linear representation of a different permutation. In the example given above the permutation (2 4 3 0 1) would become (1 4 0 2 3). This mapping has many applications in the theory of permutations.
-
GSL::Permutation#linear_to_canonical
-
GSL::Permutation#to_canonical
Computes the canonical form of the permutation
self
and returns it as a newGSL::Permutation
.
-
GSL::Permutation#canonical_to_linear
-
GSL::Permutation#to_linear
Converts a permutation
self
in canonical form back into linear form and returns it as a newGSL::Permutation
.
-
GSL::Permutation#inversions
Counts the number of inversions in the permutation
self
. An inversion is any pair of elements that are not in order. For example, the permutation 2031 has three inversions, corresponding to the pairs (2,0) (2,1) and (3,1). The identity permutation has no inversions.
-
GSL::Permutation#linear_cycles
Counts the number of cycles in the permutation
self
, given in linear form.
-
GSL::Permutation#canonical_cycles
Counts the number of cycles in the permutation
self
, given in canonical form.
Applying Permutations¶ ↑
-
GSL::Permutation::permute(v)
Applies the permutation
self
to the elements of the vectorv
, considered as a row-vector acted on by a permutation matrix from the right, v' = v P. The j-th column of the permutation matrix P is given by the p_j-th column of the identity matrix. The permutationself
and the vectorv
must have the same length.
-
GSL::Permutation::permute_inverse(v)
Applies the inverse of the permutation
self
to the elements of the vectorv
, considered as a row-vector acted on by an inverse permutation matrix from the right, v' = v P^T. Note that for permutation matrices the inverse is the same as the transpose. The j-th column of the permutation matrix P is given by the p_j-th column of the identity matrix. The permutationself
and the vectorv
must have the same length.
-
GSL::Permutation.mul(pa, pb)
Combines the two permutations
pa
andpb
into a single permutationp
and returns it. The permutationp
is equivalent to applyingpb
first and thenpa
.