GSL::Vector class¶ ↑
Contents:
See also GSL::Vector::Complex.
Class methods¶ ↑
-
GSL::Vector.alloc(ary)
-
GSL::Vector.alloc(ary)
-
GSL::Vector.alloc(range)
-
GSL::Vector.alloc(size)
-
GSL::Vector.alloc(elm0, elm1, .…)
-
GSL::Vector[elm0, elm1, .…]
Constructors.
Ex:
>> v1 = GSL::Vector.alloc(5) => GSL::Vector: [ 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 ] >> v2 = GSL::Vector.alloc(1, 3, 5, 2) => GSL::Vector: [ 1.000e+00 3.000e+00 5.000e+00 2.000e+00 ] >> v3 = GSL::Vector[1, 3, 5, 2] => GSL::Vector: [ 1.000e+00 3.000e+00 5.000e+00 2.000e+00 ] >> v4 = GSL::Vector.alloc([1, 3, 5, 2]) => GSL::Vector: [ 1.000e+00 3.000e+00 5.000e+00 2.000e+00 ] >> v5 = GSL::Vector[1..6] => GSL::Vector: [ 1.000e+00 2.000e+00 3.000e+00 4.000e+00 5.000e+00 6.000e+00 ]
-
GSL::Vector.calloc(size)
This method creates a vector object, and initializes all the elements to zero.
-
GSL::Vector.linspace(min, max, n = 10)
Creates an
GSL::Vectorwithnlinearly spaced elements betweenminandmax. Ifminis greater thanmax, the elements are stored in decreasing order. This mimics thelinspacefunction of GNU Octave.Ex:
>> x = GSL::Vector.linspace(0, 10, 5) [ 0.000e+00 2.500e+00 5.000e+00 7.500e+00 1.000e+01 ] >> y = GSL::Vector.linspace(10, 0, 5) [ 1.000e+01 7.500e+00 5.000e+00 2.500e+00 0.000e+00 ]
-
GSL::Vector.logspace(min, max, n)
Similar to
GSL::Vector#linspaceexcept that the values are logarithmically spaced from 10^minto 10^max.Ex:
>> x = GSL::Vector.logspace(1, 3, 5) [ 1.000e+01 3.162e+01 1.000e+02 3.162e+02 1.000e+03 ] >> x = GSL::Vector.logspace(3, 1, 5) [ 1.000e+03 3.162e+02 1.000e+02 3.162e+01 1.000e+01 ]
-
GSL::Vector.logspace2(min, max, n)
Similar to
GSL::Vector#linspaceexcept that the values are logarithmically spaced frommintomax.Ex:
>> x = GSL::Vector.logspace2(10, 1000, 5) [ 1.000e+01 3.162e+01 1.000e+02 3.162e+02 1.000e+03 ] >> x = GSL::Vector.logspace2(1000, 10, 5) [ 1.000e+03 3.162e+02 1.000e+02 3.162e+01 1.000e+01 ]
-
GSL::Vector.indgen(n, start=0, step=1)
This creates a vector of length
nwith elements fromstartwith intervalstep(mimics NArray#indgen).Ex:
>> v = GSL::Vector::Int.indgen(5) => GSL::Vector::Int: [ 0 1 2 3 4 ] >> v = GSL::Vector::Int.indgen(5, 3) => GSL::Vector::Int: [ 3 4 5 6 7 ] >> v = GSL::Vector.indgen(4, 1.2, 0.3) => GSL::Vector [ 1.200e+00 1.500e+00 1.800e+00 2.100e+00 ]
-
GSL::Vector.filescan(filename)
Reads a formatted ascii file and returns an array of vectors. For a data file
a.datas1 5 6 5 3 5 6 7 5 6 7 9
then
a, b, c, d = Vetor.filescan("a.dat")yieldsa = [1, 3, 5] b = [5, 5, 6] c = [6, 6, 7] d = [5, 7, 9]
NArray Extension¶ ↑
If an NArray object is given, a newly allocated vector is
created.
Ex:
na = NArray[1.0, 2, 3, 4, 5]
p na <----- NArray.float(5):
[ 1.0, 2.0, 3.0, 4.0, 5.0]
v = GSL::Vector.alloc(na)
p v <----- [ 1 2 3 4 5 ]
See also here.
NOTE:¶ ↑
In Ruby/GSL, vector length is limited within the range of Fixnum. For 32-bit CPU, the maximum of vector length is 2^30 ~ 1e9.
Methods¶ ↑
Accessing vector elements¶ ↑
-
GSL::Vector#get(args)
-
GSL::Vector#[args]
Returns elements(s) of the vector
selfifargsis a singleFixnum, a singleArrayofFixnums, or a singleGSL::Permutation(orGSL::Index). For all otherargs, the arguments are treated as withVector#subvectorand aVector::Viewis returned.
-
GSL::Vector#set(args, val)
-
GSL::Vector#[args] = val
If
argsis empty, behaves as#set_allandvalmust be aNumeric.If
argsis a singleFixnum,i, sets thei-th element of the vectorselftoval, which must be aNumeric.All other
argsspecify a subvector (as with#subvector) whose elements are assigned fromval. In this case,valcan be anArray,Range,GSL::Vector, orNumeric.NOTE: GSL does not provide a vector copy function that properly copies data across overlapping memory regions, so watch out if assigning to part of a Vector from another part of itself (see example below).
Ex:
>> require 'gsl' => true >> v = GSL::Vector[0..5] => GSL::Vector [ 0.000e+00 1.000e+00 2.000e+00 3.000e+00 4.000e+00 5.000e+00 ] >> v[2] => 2.0 >> v[1,2,3] => GSL::Vector::View [ 1.000e+00 3.000e+00 5.000e+00 ] >> v[[1,2,3]] => GSL::Vector [ 1.000e+00 2.000e+00 3.000e+00 ] >> v[3] = 9 => 9 >> v[-1] = 123 => 123 >> v => GSL::Vector [ 0.000e+00 1.000e+00 2.000e+00 9.000e+00 4.000e+00 1.230e+02 ] >> v[2,3] = 0 => 0 >> v => GSL::Vector [ 0.000e+00 1.000e+00 0.000e+00 0.000e+00 0.000e+00 1.230e+02 ] >> v[2,3] = [4,5,6] => [4, 5, 6] >> v => GSL::Vector [ 0.000e+00 1.000e+00 4.000e+00 5.000e+00 6.000e+00 1.230e+02 ] >> v[1,4] = v[0,4] # !!! Overlapping !!! => GSL::Vector::View [ 0.000e+00 0.000e+00 0.000e+00 0.000e+00 ] >> v => GSL::Vector [ 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 1.230e+02 ]
Initializing vector elements¶ ↑
-
GSL::Vector#set_all(x)
This method sets all the elements of the vector to the value
x.
-
GSL::Vector#set_zero
This method sets all the elements of the vector to zero.
-
GSL::Vector#set_basis!(i)
This method makes a basis vector by setting all the elements of the vector to zero except for the
i-th element, which is set to one. For a vectorvof size 10, the methodv.set_basis!(4)
sets the vector
vto a basis vector[0, 0, 0, 0, 1, 0, 0, 0, 0, 0].
-
GSL::Vector#set_basis(i)
This method returns a new basis vector by setting all the elements of the vector to zero except for the i-th element which is set to one. For a vector
vof size 10, the methodvb = v.set_basis(4)
creates a new vector
vbwith elements[0, 0, 0, 0, 1, 0, 0, 0, 0, 0]. The vectorvis not changed.
-
GSL::Vector#indgen!(start=0, step=1)
-
GSL::Vector#indgen(start=0, step=1)
Mimics NArray#indgen!.
Iterators¶ ↑
-
GSL::Vector#each
-
GSL::Vector#reverse_each
An iterator for each of the vector elements, used as
v.each do |x| # Show all the elements p x end
-
GSL::Vector#each_index
-
GSL::Vector#reverse_each_index
Iterators
-
GSL::Vector#collect { |item| .. }
-
GSL::Vector#map { |item| .. }
Creates a new vector by collecting the vector elements modified with some operations.
Ex:
>> a = GSL::Vector::Int[0..5] => GSL::Vector::Int [ 0 1 2 3 4 5 ] >> b = a.collect {|v| v*v} => GSL::Vector::Int [ 0 1 4 9 16 25 ] >> a => GSL::Vector::Int [ 0 1 2 3 4 5 ]
-
GSL::Vector#collect! { |item| .. }
-
GSL::Vector#map! { |item| .. }
Ex:
>> a = GSL::Vector::Int[0..5] => GSL::Vector::Int [ 0 1 2 3 4 5 ] >> a.collect! {|v| v*v} => GSL::Vector::Int [ 0 1 4 9 16 25 ] >> a => GSL::Vector::Int [ 0 1 4 9 16 25 ]
IO¶ ↑
-
GSL::Vector#print
-
GSL::Vector#fprintf(io, format = “%e”)
-
GSL::Vector#fprintf(filename, format = “%e”)
-
GSL::Vector#fscanf(io)
-
GSL::Vector#fscanf(filename)
-
GSL::Vector#fwrite(io)
-
GSL::Vector#fwrite(filename)
-
GSL::Vector#fread(io)
-
GSL::Vector#fread(filename)
Methods for writing or reading the vector. The first argument is an
IOor aStringobject.
Copying vectors¶ ↑
-
GSL::Vector#clone
-
GSL::Vector#duplicate
Create a new vector of the same elements.
Vector views¶ ↑
The GSL::Vector::View class is defined to be used as
“references” to vectors. Since the Vector::View class is a
subclass of Vector, an instance of the View class
created by slicing a Vector object can be used same as the
original vector. A View object shares the data with the
original vector, i.e. any changes in the elements of the View
object affect to the original vector.
-
GSL::Vector#subvector
-
GSL::Vector#subvector(n)
-
GSL::Vector#subvector(offset, n)
-
GSL::Vector#subvector(offset, stride, n)
-
GSL::Vector#subvector(range, stride=1)
Create a
Vector::Viewobject slicingnelements of the vectorselffrom the offsetoffset. If called with one argumentn,offsetis set to 0. With no arguments, a view is created with the same length of the original vector. If called with arangeparameter (and optionalstride), a view is created for that range (and stride). Note then, if given, is the length of the returned View.-
Example:
#!/usr/bin/env ruby require("gsl") v = GSL::Vector[1, 2, 3, 4, 5, 6] view = v.subvector(1, 4) p view.class <----- GSL::Vector::View view.print <----- [ 2 3 4 5 ] view[2] = 99 view.print <----- [ 2 3 99 5 ] v.print <----- [ 1 2 3 99 5 6 ]
-
-
GSL::Vector#subvector_with_stride(stride)
-
GSL::Vector#subvector_with_stride(offset, stride)
-
GSL::Vector#subvector_with_stride(offset, stride, n)
Return a
Vector::Viewobject of a subvector of another vectorselfwith an additional stride argument. The subvector is formed in the same way as forVector#subvectorbut the new vector view hasnelements with a step-size ofstridefrom one element to the next in the original vector. Note thatn, if given, is the length of the returned View.
-
GSL::Vector#matrix_view(n1, n2)
This creates a
Matrix::Viewobject from the vectorself. It enables to use the vector as a Matrix object.-
Ex:
>> v = GSL::Vector::Int.alloc(1..9) => GSL::Vector::Int: [ 1 2 3 4 5 6 7 8 9 ] >> m = v.matrix_view(3, 3) => GSL::Matrix::Int::View: [ 1 2 3 4 5 6 7 8 9 ] >> m[1][2] = 99 => 99 >> v => GSL::Vector::Int: [ 1 2 3 4 5 99 7 8 9 ]
-
Vector operations¶ ↑
-
GSL::Vector#swap_elements(i, j)
This method exchanges the i-th and j-th elements of the vector
in-place.
-
GSL::Vector#reverse
Reverses the order of the elements of the vector.
>> v = GSL::Vector::Int[1..5] => GSL::Vector::Int: [ 1 2 3 4 5 ] >> v.reverse => GSL::Vector::Int: [ 5 4 3 2 1 ]
-
GSL::Vector#trans
-
GSL::Vector#transpose
-
GSL::Vector#col
-
GSL::Vector#row
Transpose the vector from a row vector into a column vector and vice versa.
>> v = GSL::Vector::Int[1..5] => GSL::Vector::Int: [ 1 2 3 4 5 ] >> v.col => GSL::Vector::Int::Col: [ 1 2 3 4 5 ]
-
GSL::Vector#add(b)
Adds the elements of vector
bto the elements of the vectorself. A new vector is created, and the vectorselfis not changed.
-
GSL::Vector#sub(b)
Subtracts the element of vector
bfrom the elements ofself. A new vector is created, and the vectorselfis not changed.
-
GSL::Vector#mul(b)
Multiplies the elements of vector
selfby the elements of vectorb.
-
GSL::Vector#div(b)
Divides the elements of vector
selfby the elements of vectorb.
-
GSL::Vector#scale(x)
-
GSL::Vector#scale!(x)
This method multiplies the elements of vector
selfby the constant factorx.
-
GSL::Vector#add_constant(x)
-
GSL::Vector#add_constant!(x)
Adds the constant value
xto the elements of the vectorself.
-
GSL::Vector#+(b)
For
b,* a Number: ---> <tt>self.add_constanb(b)</tt> * a Vector: ---> <tt>self.add(b)</tt>
-
GSL::Vector#-(b)
For
b,* a Number: ---> <tt>self.add_constanb(-b)</tt> * a Vector: ---> <tt>self.sub(b)</tt>
-
GSL::Vector#/(b)
For
b,* a Number: ---> <tt>self.scale(1/b)</tt> * a Vector: ---> <tt>self.div(b)</tt>
-
GSL::Vector#*(b)
Vector multiplication.
-
Scale
>> v = GSL::Vector[1, 2] [ 1 2 ] >> v*2 [ 2 4 ]
-
Element-by-element multiplication
>> a = GSL::Vector[1, 2]; b = GSL::Vector[3, 4] [ 3 4 ] >> a*b [ 3 8 ]
-
Inner product
>> a = GSL::Vector[1, 2]; b = GSL::Vector[3, 4] [ 3 4 ] >> a*b.col => 11.0
-
GSL::Vector::Col*Vector -> GSL::Matrix
>> a = GSL::Vector::Col[1, 2]; b = GSL::Vector[3, 4] [ 3 4 ] >> a*b [ 3 4 6 8 ]
-
GSL::Matrix*Vector::Col -> GSL::Vector::Col
>> a = GSL::Vector[1, 2]; m = GSL::Matrix[[2, 3], [4, 5]] [ 2 3 4 5 ] >> m*a <--- Error TypeError: Operation with GSL::Vector is not defined (GSL::Vector::Col expected) from (irb):30:in `*' from (irb):30 >> m*a.col [ 8 14 ]
-
GSL::Vector#add!(b)
-
GSL::Vector#sub!(b)
-
GSL::Vector#mul!(b)
-
GSL::Vector#div!(b)
In-place operations with a vector
b.
-
GSL::Vector#pow(p)
-
GSL::Vector#**(p)
-
GSL::Vector#pow!(p)
Element-wise calculation of power p.
Ex)
>> require("gsl") >> v = GSL::Vector[1, 2, 3] => GSL::Vector [ 1.000e+00 2.000e+00 3.000e+00 ] >> v.pow(2) => GSL::Vector [ 1.000e+00 4.000e+00 9.000e+00 ] >> v**2 => GSL::Vector [ 1.000e+00 4.000e+00 9.000e+00 ] >> v => GSL::Vector [ 1.000e+00 2.000e+00 3.000e+00 ] >> v.pow!(2) => GSL::Vector [ 1.000e+00 4.000e+00 9.000e+00 ] >> v => GSL::Vector [ 1.000e+00 4.000e+00 9.000e+00 ]
-
GSL::Vector#swap_elements(i, j)
This exchanges the
i-th andj-th elements of the vectorselfin-place.
-
GSL::Vector#clone
-
GSL::Vector#duplicate
These create a copy of the vector
self.
-
GSL::Vector.connect(v1, v2, v3, …)
-
GSL::Vector#connect(v2, v3, …)
Creates a new vector by connecting all the elements of the given vectors.
>> v1 = GSL::Vector::Int[1, 3] => GSL::Vector::Int: [ 1 3 ] >> v2 = GSL::Vector::Int[4, 3, 5] => GSL::Vector::Int: [ 4 3 5 ] >> v1.connect(v2) => GSL::Vector::Int: [ 1 3 4 3 5 ]
-
GSL::Vector#sgn
-
GSL::Vector#signum
Creates a new vector, with elements +1 if
x_i> 0, -1 ifx_i< 0, otherwise 0. Note that this definition gives the signum of NaN as 0 rather than NaN.
-
GSL::Vector#abs
-
GSL::Vector#fabs
Creates a new vector, with elements
fabs(x_i).>> v = GSL::Vector::Int[-3, 2, -5, 4] => GSL::Vector::Int: [ -3 2 -5 4 ] >> v.abs => GSL::Vector::Int: [ 3 2 5 4 ]
-
GSL::Vector#square
-
GSL::Vector#abs2
Create a new vector, with elements
x_i*x_i.>> v = GSL::Vector::Int[1..4] => GSL::Vector::Int: [ 1 2 3 4 ] >> v.square => GSL::Vector::Int: [ 1 4 9 16 ]
-
GSL::Vector#sqrt
Creates a new vector, with elements
sqrt(x_i).
-
GSL::Vector#floor
-
GSL::Vector#ceil
-
GSL::Vector#round
Ex:
>> v = GSL::Vector[1.1, 2.7, 3.5, 4.3] => GSL::Vector [ 1.100e+00 2.700e+00 3.500e+00 4.300e+00 ] >> v.floor => GSL::Vector::Int [ 1 2 3 4 ] >> v.ceil => GSL::Vector::Int [ 2 3 4 5 ] >> v.round => GSL::Vector::Int [ 1 3 4 4 ]
-
GSL::Vector#normalize(nrm = 1.0)
Creates a new vector of norm
nrm, by scaling the vectorself.
-
GSL::Vector#normalize!(nrm = 1.0)
This normalizes the vector
selfin-place.Ex:
tcsh> irb >> require("gsl") => true >> a = GSL::Vector[-1, -2, -3, -4] => GSL::Vector: [ -1.000e+00 -2.000e+00 -3.000e+00 -4.000e+00 ] >> b = a.abs => GSL::Vector: [ 1.000e+00 2.000e+00 3.000e+00 4.000e+00 ] >> b.sqrt => GSL::Vector: [ 1.000e+00 1.414e+00 1.732e+00 2.000e+00 ] >> b.square => GSL::Vector: [ 1.000e+00 4.000e+00 9.000e+00 1.600e+01 ] >> c = b.normalize(2) => GSL::Vector: [ 2.582e-01 5.164e-01 7.746e-01 1.033e+00 ] >> c.square.sum => 2.0
-
GSL::Vector#decimate(n)
Creates a new vector by averaring every
npoints of the vectorselfdown to one point.
-
GSL::Vector#diff(k = 1)
Calculate
k-th differences of a vectorself.
-
GSL::Vector#join(sep = “ ”)
Converts the vector to a
Stringby joining all the elements with a separatorsep.
-
GSL::Vector#zip(vec, …)
-
GSL::Vector.zip(vec, …)
Create an
Arrayof vectors by merging the elements ofselfwith corresponding elements from each arguments.Ex:
>> require("gsl") >> a = GSL::Vector[4, 5, 6] >> b = GSL::Vector[7, 8, 9] >> GSL::Vector[1, 2, 3].zip(a, b) [[ 1.000e+00 4.000e+00 7.000e+00 ], [ 2.000e+00 5.000e+00 8.000e+00 ], [ 3.000e+00 6.000e+00 9.000e+00 ]] >> GSL::Vector[1, 2].zip(a, b) [[ 1.000e+00 4.000e+00 7.000e+00 ], [ 2.000e+00 5.000e+00 8.000e+00 ]] >> a.zip(GSL::Vector[1, 2], GSL::Vector[8.0]) [[ 4.000e+00 1.000e+00 8.000e+00 ], [ 5.000e+00 2.000e+00 0.000e+00 ], [ 6.000e+00 0.000e+00 0.000e+00 ]]
-
GSL::Vector#concat(x)
Returns a new Vector that contains the concatenation
selfandx, which must be anArray,Fixnum,Bignum,Float,Range, orGSL::Vector.
Vector operations with size changes¶ ↑
The methods below change vector length of self. A
Vector's length may not extend past its original allocation. Use of
these methods is discouraged. Existing Views may still refer to elements
beyond the end of the shortened Vector. These elements remain allocated,
but are effectvely unmanaged.
-
GSL::Vector#delete(x)
Deletes items from
selfthat are equal tox. If the item is not found, returnsnil, otherwise returnsx.
-
GSL::Vector#delete_at(i)
Deletes the element at the specified index
i, returning that element, ornilif the index is out of range.
-
GSL::Vector#delete_if { |x| … }
Deletes every element of
selffor which block evaluates totrueand returnsself.
Finding maximum and minimum elements of vectors¶ ↑
-
GSL::Vector#max
This method returns the maximum value in the vector.
-
GSL::Vector#min
This method returns the minimum value in the vector.
-
GSL::Vector#minmax
This method returns an array of two elements, the minimum and the maximum values in the vector
self.
-
GSL::Vector#max_index
This method returns the index of the maximum value in the vector. When there are several equal maximum elements then the lowest index is returned.
-
GSL::Vector#min_index
This method returns the index of the minimum value in the vector. When there are several equal minimum elements then the lowest index is returned.
-
GSL::Vector#minmax_index
This method returns an array of two elements which has the indices of the minimum and the maximum values in the vector
self.
Vector Properties¶ ↑
-
GSL::Vector#size
-
GSL::Vector#len
-
GSL::Vector#length
Return the vector length.
-
GSL::Vector#stride
Return the vector stride.
-
GSL::Vector#sum
Returns the sum of the vector elements.
-
GSL::Vector#prod
Returns the product of the vector elements.
-
GSL::Vector#cumsum
Calculate the cumulative sum of elements of
selfand returns as a new vector.
-
GSL::Vector#cumprod
Calculate the cumulative product of elements of
selfand returns as a new vector.
-
GSL::Vector#isnull
Returns 1 if all the elements of the vector
selfare zero, and 0 otherwise.
-
GSL::Vector#isnull?
Return
trueif all the elements of the vectorselfare zero, andfalseotherwise.
-
GSL::Vector#ispos
-
GSL::Vector#ispos?
-
GSL::Vector#isneg
-
GSL::Vector#isneg?
(GSL-1.9 or later) Return 1 (true) if all the elements of the vector
selfare zero, strictly positive, strictly negative respectively, and 0 (false) otherwise.
-
GSL::Vector#isnonneg
-
GSL::Vector#isnonneg?
(GSL-1.10 or later) Return 1 (true) if all the elements of the vector
selfare non-negative , and 0 (false) otherwise.
-
GSL::Vector#all?
Returns
trueif all the vector elements are non-zero, andfalseotherwise. If a block is given, the method returnstrueif the tests are true for all the elements.
-
GSL::Vector#any?
Returns
trueif any the vector elements are non-zero, andfalseotherwise. If a block is given, the method returnstrueif the tests are true for any of the elements.
-
GSL::Vector#none?
Returns
trueif all the elements of the vectorselfare zero, andfalseotherwise (just asGSL::Vector#isnull?). If a block is given, the method returnstrueif the tests are false for all the elements.Ex:
>> a = GSL::Vector[1, 2, 3] >> b = GSL::Vector[1, 2, 0] >> c = GSL::Vector[0, 0, 0] >> a.all? => true >> b.all? => false >> b.any? => true >> c.any? => false >> a.none? => false >> c.none? => true
-
GSL::Vector#all
-
GSL::Vector#any
-
GSL::Vector#none
Returns 1 or 0.
-
GSL::Vector#equal?(other, eps = 1e-10)
-
GSL::Vector#==(other, eps = 1e-10)
Returns
trueif the vectors have same size and elements equal to absolute accuraryepsfor all the indices, andfalseotherwise.
Element-wise vector comparison¶ ↑
-
GSL::Vector#eq(other)
-
GSL::Vector#ne(other)
-
GSL::Vector#gt(other)
-
GSL::Vector#ge(other)
-
GSL::Vector#lt(other)
-
GSL::Vector#le(other)
Return a
Block::Byteobject with elements 0/1 by comparing the two vectorsselfandother. Note that the values returned are 0/1, nottrue/false, thus all of the elements are “true” in Ruby.Ex:
>> a = GSL::Vector[1, 2, 3] >> b = GSL::Vector[1, 2, 5] >> a.eq(b) [ 1 1 0 ] >> a.ne(b) [ 0 0 1 ] >> a.gt(b) [ 0 0 0 ] >> a.ge(b) [ 1 1 0 ] >> a.eq(3) [ 0 0 1 ] >> a.ne(2) [ 1 0 1 ] >> a.ge(2) [ 0 1 1 ]
-
GSL::Vector#and(other)
-
GSL::Vector#or(other)
-
GSL::Vector#xor(other)
-
GSL::Vector#not
Ex:
>> a = GSL::Vector[1, 0, 3, 0] >> b = GSL::Vector[3, 4, 0, 0] >> a.and(b) [ 1 0 0 0 ] >> a.or(b) [ 1 1 1 0 ] >> a.xor(b) [ 0 1 1 0 ] >> a.not [ 0 1 0 1 ] >> b.not [ 0 0 1 1 ]
-
GSL::Vector#where
-
GSL::Vector#where { |elm| … }
Returns the vector indices where the tests are true. If all the test failed
nilis returned.Ex:
>> v = GSL::Vector::Int[0, 3, 0, -2, 3, 5, 0, 3] >> v.where [ 1 3 4 5 7 ] # where elements are non-zero >> v.where { |elm| elm == -2 } [ 3 ] >> a = GSL::Vector[0, 0, 0] >> a.where => nil
Histogram¶ ↑
-
GSL::Vector#histogram(n)
-
GSL::Vector#histogram(ranges)
-
GSL::Vector#histogram(n, min, max)
-
GSL::Vector#histogram(n, [min, max])
Creates a histogram filling the vector
self.Example:
>> r = GSL::Rng.alloc # Random number generator => #<GSL::Rng:0x6d8594> >> v = r.gaussian(1, 1000) # Generate 1000 Gaussian random numbers => GSL::Vector [ 1.339e-01 -8.810e-02 1.674e+00 7.336e-01 9.975e-01 -1.278e+00 -2.397e+00 ... ] >> h = v.histogram(50, [-4, 4]) # Creates a histogram of size 50, range [-4, 4) => #<GSL::Histogram:0x6d28b0> >> h.graph("-T X -C -g 3") # Show the histogram => trueThis is equivalent to
h = Histogram.alloc(50, [-4, 4]) h.increment(v)
Sorting¶ ↑
-
GSL::Vector#sort
-
GSL::Vector#sort!
These methods sort the vector
selfin ascending numerical order.
-
GSL::Vector#sort_index
This method indirectly sorts the elements of the vector
selfinto ascending order, and returns the resulting permutation. The elements of permutation give the index of the vector element which would have been stored in that position if the vector had been sorted in place. The first element of permutation gives the index of the least element in the vector, and the last element of permutation gives the index of the greatest vector element. The vectorselfis not changed.
-
GSL::Vector#sort_smallest(n)
-
GSL::Vector#sort_largest(n)
-
GSL::Vector#sort_smallest_index(n)
-
GSL::Vector#sort_largest_index(n)
Ex:
>> v = GSL::Vector::Int[8, 2, 3, 7, 9, 1, 4] => GSL::Vector::Int: [ 8 2 3 7 9 1 4 ] >> v.sort => GSL::Vector::Int: [ 1 2 3 4 7 8 9 ] >> v.sort_index => GSL::Permutation: [ 5 1 2 6 3 0 4 ] >> v.sort_largest(3) => GSL::Vector::Int: [ 9 8 7 ] >> v.sort_smallest(3) => GSL::Vector::Int: [ 1 2 3 ]
BLAS Methods¶ ↑
-
GSL::Vector#nrm2
-
GSL::Vector#dnrm2
Compute the Euclidean norm ||x||_2 = sqrt {sum x_i^2} of the vector.
-
GSL::Vector#asum
-
GSL::Vector#dasum
Compute the absolute sum sum |x_i| of the elements of the vector.
Data type conversions¶ ↑
-
GSL::Vector#to_a
This method converts the vector into a Ruby array. A Ruby array also can be converted into a GSL::Vector object with the
to_gvmethod. For example,v = GSL::Vector.alloc([1, 2, 3, 4, 5]) a = v.to_a -> GSL::Vector to an array p a -> [1.0, 2.0, 3.0, 4.0, 5.0] a[2] = 12.0 v2 = a.to_gv -> a new GSL::Vector object v2.print -> 1.0000e+00 2.0000e+00 1.2000e+01 4.0000e+00 5.0000e+00
-
GSL::Vector#to_m(nrow, ncol)
Creates a
GSL::Matrixobject ofnrowrows andncolcolumns.>> v = GSL::Vector::Int[1..5] => GSL::Vector::Int: [ 1 2 3 4 5 ] >> v.to_m(2, 3) => GSL::Matrix::Int: [ 1 2 3 4 5 0 ] >> v.to_m(2, 2) => GSL::Matrix::Int: [ 1 2 3 4 ] >> v.to_m(3, 2) => GSL::Matrix::Int: [ 1 2 3 4 5 0 ]
-
GSL::Vector#to_m_diagonal
Converts the vector into a diagonal matrix. See also GSL::Matrix.diagonal(v).
>> v = GSL::Vector[1..4].to_i => GSL::Vector::Int: [ 1 2 3 4 ] >> v.to_m_diagonal => GSL::Matrix::Int: [ 1 0 0 0 0 2 0 0 0 0 3 0 0 0 0 4 ]
-
GSL::Vector#to_m_circulant
Creates a circulant matrix.
>> v = GSL::Vector::Int[1..5] => GSL::Vector::Int: [ 1 2 3 4 5 ] >> v.to_m_circulant => GSL::Matrix::Int: [ 5 1 2 3 4 4 5 1 2 3 3 4 5 1 2 2 3 4 5 1 1 2 3 4 5 ]
-
GSL::Vector#to_complex
-
GSL::Vector#to_complex2
Example:
>> v = GSL::Vector[1..4] => GSL::Vector [ 1.000e+00 2.000e+00 3.000e+00 4.000e+00 ] >> v.to_complex [ [1.000e+00 0.000e+00] [2.000e+00 0.000e+00] [3.000e+00 0.000e+00] [4.000e+00 0.000e+00] ] => #<GSL::Vector::Complex:0x6d7d24> >> v.to_complex2 [ [1.000e+00 2.000e+00] [3.000e+00 4.000e+00] ] => #<GSL::Vector::Complex:0x6d6424>
-
GSL::Vector#to_tensor(rank, dimension)
NArray conversions¶ ↑
-
GSL::Vector#to_na
Converts a vector
selfinto anNArrayobject. The data are copied to newly allocated memory.
-
GSL::Vector#to_na2
-
GSL::Vector#to_na_ref
Create an
NArrayreference of the vectorself.Example:
>> v = GSL::Vector::Int[1, 2, 3, 4] => GSL::Vector::Int [ 1 2 3 4 ] >> na = v.to_na => NArray.int(4): [ 1, 2, 3, 4 ] >> na2 = v.to_na2 => NArray(ref).int(4): [ 1, 2, 3, 4 ] >> na[1] = 99 => 99 >> v # na and v are independent => GSL::Vector::Int [ 1 2 3 4 ] >> na2[1] = 99 # na2 points to the data of v => 99 >> v => GSL::Vector::Int [ 1 99 3 4 ]
-
NArray#to_gv
-
NArray#to_gslv
Create
GSL::Vectorobject from theNArrayobjectself.
-
NArray#to_gv_view
-
NArray#to_gv2
-
NArray#to_gslv_view
A
GSL::Vector::Viewobject is created from the NArray objectself. This method does not allocate memory for the data: the data ofselfare not copied, but shared with theViewobject created, thus any modifications to theViewobject affect on the original NArray object. In other words, theViewobject can be used as areferenceto the NArray object.Ex:
tcsh> irb >> require("gsl") => true >> na = NArray[1.0, 2, 3, 4, 5] => NArray.float(5): [ 1.0, 2.0, 3.0, 4.0, 5.0 ] >> vv = na.to_gv_view # Create a view sharing the memory => GSL::Vector::View [ 1.000e+00 2.000e+00 3.000e+00 4.000e+00 5.000e+00 ] >> vv[3] = 9 => 9 >> na => NArray.float(5): [ 1.0, 2.0, 3.0, 9.0, 5.0 ] # The data are changed >> v = na.to_gv # A vector with newly allocated memory => GSL::Vector [ 1.000e+00 2.000e+00 3.000e+00 9.000e+00 5.000e+00 ] >> v[1] = 123 => 123 >> v => GSL::Vector [ 1.000e+00 1.230e+02 3.000e+00 9.000e+00 5.000e+00 ] >> na => NArray.float(5): [ 1.0, 2.0, 3.0, 9.0, 5.0 ] # v and na are independent >> na = NArray[1.0, 2, 3, 4, 5, 6] => NArray.float(6): [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ] >> m = na.to_gv_view.matrix_view(2, 3) => GSL::Matrix::View [ 1.000e+00 2.000e+00 3.000e+00 4.000e+00 5.000e+00 6.000e+00 ] >> m[1][2] = 9 => 9 >> na => NArray.float(6): [ 1.0, 2.0, 3.0, 4.0, 5.0, 9.0 ]
Graphics¶ ↑
-
GSL::Vector.graph(y)
-
GSL::Vector.graph(y, options)
-
GSL::Vector.graph(x, y)
-
GSL::Vector.graph(x, y, options)
-
GSL::Vector#graph(options)
-
GSL::Vector#graph(x, options)
These methods use the GNU plotutils
graphapplication to plot a vectorself. The options ofgraphas “-T X -C” can be given by a String.Example:
>> x = GSL::Vector.linspace(0, 2.0*M_PI, 20) >> c = GSL::Sf::cos(x) >> s = GSL::Sf::sin(x) >> GSL::Vector.graph(x, c, s, "-T X -C -L 'cos(x), sin(x)'")